
j!/

Automated IDEF3 and IDEF4

Systems Design
Specification Document

Patricia Griffith Friel
Thomas M. Blinn

Knowledge Based Systems, Inc.

/

November 20, 1989 - December 19, 1989

Cooperative Agreement NCC 9-16
Research Activity No. IM. 15

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

O ©

Research Institute for Computing and Information Systems

University of Houston - C/ear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

Automated IDEF3 and IDEF4

Systems Design
Specification Document

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Patricia Griffith Friel and Thomas M. Blinn

of Knowledge Based Systems, Inc. Dr. Peter C. Bishop, Director of the Space Business

Research Center, UHCL, served as RICIS research coordinator.

Funding has been provided by the NASA Information Systems Directorate,

NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA Johnson

Space Center and the University of Houston-Clear Lake. The NASA technical monitor

for this activity was Robert T. Savely, of the Software Technology Branch, Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

Automated IDEF3 and IDEF4

Systems Design Specifications
Document

An Interim Technical Report

Developed By: Knowledge Based Systems, Inc.

2746 Longmire Drive

College Station, TX 77845-5424

(409) 696-7979

Principal Investigators:
Dr. Patricia Griffith Friel

Thomas M. Blinn

Developed For: Software Technology Branch

NASA Johnson Space Center

Houston, TX 77058

Under Subcontract to: RICIS Program

University of Houston - Clear Lake

Houston, Texas 77058-1096

Subcontract Number 055:

Cooperative Agreement Number: NCC 9-16

November 20, 1989 December 19, 1989

Table of Contents

1.0

2.0

3.0

3.1

3.2

4.0

4.1

4.2

5.0

Introduction .. 1

Philosophy of Operation ... 3

Functional Summary ... 8

IDEF3 Functional Operation .. 8

IDEF4 Functional Operation .. 10

Automated IDEF3 and IDEF4 Tool Design 12

IDEF3 Design Components ... 12
4.1.1 IDEF3 Data Structures .. 12

4.1.2 IDEF3 User Interface and Constraint Enforcement 22

IDEF4 Design Components ... 36
4.2.1 IDEF4 Data Structures .. 37

4.2.2 IDEF4 User Interface and Constraint Enforcement 45

Conclusion ... 80

List of Figures

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. IDEF3 Functional Matrix .. 9

2. IDEF4 Functional Matrix .. 1 1

3. IDEF3 Mixin Classes Type Diagram ... 1 2

4. Process Flow Objects Type Diagram ... 1 4

5. Object State Objects Type Diagram ... 1 7

6. IDEF3 Organization Objects Class Inheritance

Diagram .. 1 8

7. Basic IDEF3 Objects Class Inheritance Diagram 20

8. Object State Transition Objects Class Inheritance

Diagram .. 2 1

9. User/IDEF3 Tool Interaction Scenario 2 3

10. Decomposition of Formulate Process Flow

Description .. 2 4

11. Decomposition of Create Decomposition 25

12. Decomposmon of Edit Process Description 26

13. Decomposmon of Process UOB Command 2 7

14. Decomposmon of Process Link Command 2 8

15. Decomposmon of Process Junction Command 2 8

16. Decomposition of Process Referent Command 29

17. Decomposmon of Process Elaboration Command 30

18. Decomposition of Summarize Object State

Transition .. 30

19. Decomposition of Process Object State Command 3 1

20. Decomposition of Process Transition Arc Command 3 2

21. Decomposition of Process Process Description

Diagram Command ... 3 2

22. IDEF3 Screen #1 - Process Flow Diagram 3 3

23. IDEF3 Screen #2 - UOB Decomposition Browser 3 4

24. IDEF3 Screen #3 Object State Browser 3 4

25. IDEF3 Screen #4 - Object State Transition Diagram 3 5

26a. IDEF3 Screen #5a Edit Pop-up Window 3 5

26b. IDEF3 Screen #5b - Text Edit Pop-up Window 3 6

27. IDEF3 Screen #6 - Pick From List Pop-up Window 3 6

28. IDEF4 Mixin Objects Type Diagram .. 3 7

29. IDEF4 Objects Type Diagram ... 3 9

30. IDEF4 Basic Object Class Inheritance Diagram 1 42

31. IDEF4 Basic Object Class Inheritance Diagram 2 43

32. IDEF4 Diagram Objects Class Inheritance Diagram 44

33. Design/Maintain OO System with IDEF4 Scenario 4 6

ii

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

34.

35.
36.
37.
38.
39.
40.
41.

42.
43.
44.

45.

46.

47.

48.

49.

50.

51.

52.
53.
54.
55.
56.
57.

58.

59.

60.

61.

Decomposition of Develop IDEF4 Design

Representation .. 4 7

Decomposition of Process Class Diagram Command 4 8

Decomposmon of Execute Create Class Command 49

Decomposition of Execute Delete Class Command 49

Decomposmon of Execute Rename Class Command 50

Decomposmon of Execute Copy Class Command 5 0

Decomposmon of Execute Inheritance Command 50

Decomposition of Execute Class Invariance

Command ... 5 1

Decomposition of Edit Class Invariance Data Sheet 5 1

Decomposition of Execute Feature Command 5 1

Decomposition of Execute Method Browser
Command ... 52

Decomposition of Execute Create Method Set

Command ... 5 3

Decomposition of Add Class/Routine Pairs to Method
Set 5 3

Decomposition of Execute Edit Method Set

Command ... 5 3

Decomposition of Execute Copy Method Set
Command ... 5 4

Decomposition of Execute Delete Method Set
Command ... 54

Decomposition of Process Contract Data Sheet
Command ... 5 4

Decomposition of Execute Feature Browser
Command ... 55

Decomposition of Execute Create Feature Command 5 6

Decomposition of Specify New Feature 5 6

Decomposition of Execute Delete Feature Command 5 6

Decomposition of Execute Copy Feature Command 5 7

Decomposition of Execute Edit Feature Command 5 7

Decomposition of Execute Class Inheritance Diagram
Command ... 5 8

Decomposition of Execute Create Inheritance

Diagram Command ... 5 9

Decomposition of Add Classes to Inheritance

Diagram .. 5 9

Decomposition of Execute Copy Inheritance Diagram
Command ... 5 9

Decomposition of Execute Edit Inheritance Diagram
Command ... 60

iii

Figure 62. Decomposition of Execute Create Inheritance Link
Command ...6 0

Figure 63. Decomposition of Execute Delete Inheritance Link
Command ...60

Figure 64. Decomposition of Execute Type Diagram Command 6 1
Figure 65. Decomposition of Execute Create Type Diagram

Command ..6 2
Figure 66. Decomposition of Add Classes to Type Diagram

Command ...62
Figure 67. Decomposition of Execute Edit Type Diagram

Command ...63
Figure 68. Decomposition of Execute Copy Type Diagram

Command ...63
Figure 69. Decomposition of Execute Type Link Command63
Figure 70. Decomposition of Specify New Type Link64
Figure 71. Decomposition of Edit Type Link ...6 4
Figure 72. Decomposition of Execute Method Taxonomy

Diagram Command...6 5
Figure 73. Decomposition of Execute Create Method Taxonomy

Command ...6 6
Figure 74. Decomposition of Add Method Sets to Method Set

Taxonomy ..66
Figure 75. Decomposition of Execute Copy Method Taxonomy

Command ...6 6
Figure 76. Decomposition of Execute Edit Method Taxonomy

Command ...67
Figure 77. Decomposition of Execute Method Set Link

Command ...67
Figure 78. Decomposition of Execute Client Diagram Command6 8
Figure 79. Decomposition of Execute Create Client Diagram

Command ...69
Figure 80. Decomposition of Add Suppliers to Client Diagram69
Figure 81. Decomposition of Add Clients to Client Diagram

Command ...6 9
Figure 82. Decomposition of Execute Copy Client Diagram

Command ...70
Figure 83. Decomposition of Execute Add Suppliers Command70
Figure 84. Decomposition of Execute Add Clients Command 7 0
Figure 85. Decomposition of ExecuteRemove Subordinating

Link Command .. 7 0

Figure 86. Decomposition of Execute Protocol Diagram

Command ... 7 1

iv

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99. IDEF4 Screen 10 -

100. IDEF4 Screen 11

Decomposition of Execute Create Protocol Diagram

Command ... 72

Decomposition of Execute Edit Protocol Diagram

Command ... 7 3

Decomposition of Execute Copy Protocol Command 7 3

IDEF4 Screen 1 Class Inheritance Diagram 7 4

IDEF4 Screen 2 Type Diagram ... 7 5

IDEF4 Screen 3 Method Taxonomy Diagram
Screen ... 75

IDEF4 Screen 4 - Client Diagram .. 7 6

IDEF4 Screen 5 - Protocol Diagram ... 7 6
IDEF4 Screen 6 - Class Browser ... 7 7

IDEF4 Screen 7 Method Set Browser 7 7

IDEF4 Screen 8 - Feature Browser .. 7 8

IDEF4 Screen 9 - Pick From List Pop-up Window 7 8

Input/Edit Pop-up Window 79
Generic Text Edit Window 7 9

1.0 Introduction

This document provides the initial design specification for the IDEF3

and IDEF4 systems that will provide automated support for IDEF3

and IDEF4 modeling. The IDEF3 method is a scenario-driven process

flow description capture method intended to capture the knowledge

about how a particular system works. The IDEF3 method provides

modes to represent both (1) Process Flow Descriptions to capture the

relationships between actions within the context of a specific

scenario and (2) Object State Transition to capture the description of
the allowable states and conditions for transition between those

states of an object in the domain. The automated IDEF3 tool will

provide support for both of these modes. The IDEF4 method is a

graphically oriented methodology for the design of object oriented

software systems.

Section 2.0 describes the philosophy of operation that was adopted

for the design of these tools. It describes the general characteristics

that the tool should have to provide effective support for these two

methodologies.

Section 3.0 presents a mapping between the conceptual components

of the two tools and the functional requirements specified in the

functional requirements document, "IDEF3 and IDEF4 Automation

System Requirements Document and System Environment Models.

Each component of the two tools provide support for only a subset of

the functional requirements. This section will indicate what

functionality is provided by each component.

Finally, in Section 4.0, the detailed designs of the two tools are

presented. Interestingly, these designs are presented using both
IDEF3 and IDEF4. IDEF4 is used to define the various objects that

will exist within the two tools while IDEF3 process descriptions

define the procedures that would be performed (by the user and by

the automated system in support of the user) to create IDEF3

descriptions and IDEF4 designs using the two tools. These process

descriptions define the interaction between the user and the tools.

Section 4.1 presents the design of the IDEF3 tool, including:

(1) IDEF4 Type Diagrams defining the basic data

structures (classes) of the automated IDEF3 tool as

well as the valid types that features of these classes

may take. These classes would include the basic

Introduction Knowledge Based Systems, Inc.

IDEF3 objects (UOBs, Elaborations, etc...) as well as the

organizational structures (Scenarios, Decompositions,

etc...).

(2) IDEF4 Class Inheritance Diagrams to indicate the

relationships between the classes defined for the
IDEF3 tool.

(3) IDEF3 Process Descriptions to describe the

procedures that the user and tool would perform to

create a valid IDEF3 process description.

Section 4.2 presents the design of the IDEF4 tool, including:

(1) IDEF4 Type Diagrams, defining the basic data

structures (classes) of the automated IDEF4 tool as

well as the valid types that features of these classes

may take. These classes would include the basic

IDEF4 objects (Class, Feature, Method Set, etc...) as

well as the organization structures (Diagrams).

(2) IDEF4 Class Inheritance Diagrams to indicate the

relationships between the classes defined for the
IDEF4 tool.

(3) IDEF3 Process Descriptions to describe the

procedures that the user and tool would perform to

create a valid IDEF4 system design.

Introduction Knowledge Based Systems, Inc.

3

2.0 Philosophy of Operation

One of the primary mechanisms used for descriptions of the world is

relating a story in terms of an ordered sequence of events or

activities. The original IDEFs were developed for the purpose of

enhancing communication among people who needed to decide how

their existing systems were to be integrated. IDEF0 was designed to

allow a graceful expansion of the description of a systems' functions

through the process of function decomposition and categorization of

the relations between functions (i.e., in terms of the Input, Output,

Control, and Mechanism classification). IDEF1 was designed to allow

the description of the information that an organization deems

important to manage in order to accomplish its objectives. The third

IDEF (IDEF2) was originally intended as a user interface modeling

method. However, since the ICAM Program needed a simulation

modeling tool, the resulting IDEF2 was a method for representing the

time varying behavior of resources in a manufacturing system,

providing a framework for specification of math model based

simulations. It was the intent of the methodology program within

ICAM to rectify this situation but limitation of funding did not allow
this to happen. As a result, the lack of a method which would

support the structuring of descriptions of the user view of a system

has been a major shortcoming of the IDEF system. The basic problem

from a methodology point of view is the need to distinguish between

a description of what a system (existing or proposed) is supposed to

do and a representative simulation model that will predict what a

system will do. The latter was the focus of IDEF2, the former is the
focus of IDEF3.

The development of IDEF4 came from the recognition that the

modularity, maintainability and code reusability that results from

the object oriented programming paradigm can be realized in

traditional data processing applications. The proven ability of the

object oriented programming paradigm to support data level

integration in large complex distributed systems is also a major

factor in the widespread interest in this technology from the

traditional data processing community. The object oriented

programming paradigm provides the developer with an abstract

view of his program as composed of a set of state maintaining objects

which define the behavior of the program by the protocol of their

interactions. An object consists of a set of local state defining

attributes and a set of methods (procedures) that define the behavior

of that particular object and its relationship to the other objects that

Philosophy of Operation Knowledge Based Systems, Inc.

4

make up the system. IDEF4 was developed as a design tool for

software designers who use object-oriented languages such as the

Common LISP Object System, Flavors, C++, SmallTalk, Objective C and

others. Since effective usage of the object-oriented paradigm

requires a different thought process than used with conventional

procedural or database languages, standard methodologies such as

structure charts, data flow diagrams, and traditional data design

models (hierarchical, relational, and network) are not sufficient.

IDEF4 seeks to provide the necessary facilities to support the object-

oriented design decision making process.

A logical step after the development of a methodology is the

automation of that methodology. As with other processes,

automating IDEF3 and IDEF4 should reduce the turnaround time

required to produce the descriptions and designs as well as increase

the productivity of the domain experts. But, while automation

addresses the needs of the domain experts, initial prototyping can

serve other purposes. In this light, the prototype IDEF3 and IDEF4

systems will attempt to address several other areas.

First of all, the prototype IDEF3 and IDEF4 systems will demonstrate

the viability of the two methodologies. Since IDEF3 and IDEF4 are

very young methodologies, the prototype tools will serve as a

platform for demonstrating the concepts and intentions of the

methodologies. Additionally, the prototypes will showcase new

technology and demonstrate the effect the technology can have on

automated tools. Perhaps the most significant technology to be

incorporated in the prototypes will be an object oriented database

system. The object oriented database technology is still evolving and

very few commercial products exist. By using an object oriented

system, the prototypes will demonstrate the importance of this new

technology.

While the methodologies and the technology used to develop the

prototypes are important, a more basic need to be satisfied by the

prototype development is the demonstration of the basic

functionality required to automate the methodology. In doing this, it

is possible to identify those components of the methodologies that

prove most difficult to automate. With this knowledge, a more

accurate development strategy can be produced when attempting to
build the full scale automated tools. Potential areas where additional

work will be required after the initial prototyping deal with the

integration issues between various modeling methodologies and the

Philosophy of Operation Knowledge Based Systems, Inc.

5

database issues revolving around the object oriented database

architecture.

In addition to these functional goals, the IDEF3 and IDEF4 prototypes

should display the following operational characteristics:

Ease of Data Entry

The system should be simple to use. The tool would not be

very useful if the operation of the tool made the

description and design processes more complicated than it
would be without an automated tool.

No Redundant Data Entry

The system should not require the user to input
information more that once. Once a datum exists within

the system, the datum should be accessible for use at any
time.

lntegratability

The tools should have hooks for integration with other

tools (particularly IDEFO and IDEF1 tools) and provide

means of using process descriptions and designs for

automated analysis (i.e., logical consistency, qualitative

simulation and code generation).

Presentation�Graphic Based Operation
The most obvious characteristic will be the systems user

interface. The design of the two tools has proceeded with

the assumption that the user interface will be a

presentation/graphic based operation. What this means is
that the interface will be frame (window) based with

displayed objects being mouse sensitive. The objects on

the screen will be easily manipulated using the mouse as

an input device.

Multi-mode Input and Editing Capability
An additional characteristic that the interface should

demonstrate is a multi-mode operational ability. The

multi-mode input capability will give the user the greatest

amount of freedom in developing their descriptions and

designs. This is especially important since IDEF3 and

IDEF4 are relatively new methodologies that do not have

well defined strategies for model development. These

Philosophy of Operation Knowledge Based Systems, Inc.

6

multi-modes will serve as experiments to determine which

modes are useful and which modes are useless as well as

to define an organized development strategy for process
descriptions and object oriented designs.

Knowledge Based Operation

Probably the most important aspect of these tools is that

they demonstrate a good deal of knowledge based

operation. The tools should have an understanding of the

effect that certain operations will have on the process

description or design database. When these operations are

performed, the tool should have the ability to revise the

model database intelligently so that the number of

operations required by the user is reduced to a minimum.

Also, the tool should have some conflict resolution

strategies encoded into the system to ensure that the

models are consistent at all times. The user should not be

required to resolve conflicts that can be safely resolved
using algorithmic or heuristic methods.

By adhering to these concepts, the prototype tools will give the

expert the support necessary to effectively develop IDEF3 process

flow descriptions and IDEF4 object oriented designs. The IDEF3 tool
will allow the expert to:

• Develop and define IDEF3 process description

• Evolve an existing IDEF3 process description

• Identify valid states that objects may exist in during a process

• Expand on information represented in IDEFO and IDEF1 models

The IDEF4 tool will allow the user to:

• Develop and define IDEF4 design representation

• Evolve an existing IDEF4 design

• Modify the design of an existing software system

• Use an IDEF4 design to maintain an Object Oriented Software
System

To provide these capabilities and to pi'oduce designs that could be

beneficial to the design of full-scale production tools, several design

goals were identified that regulated the development of the
prototype tool designs. These goals are to:

Philosophy of Operation Knowledge Based Systems, lnc.

• Design tools that demonstrate a high degree of functionality

• Design tools that incorporate knowledge based characteristics

• Design tools that can be upgraded to fully functional tools (on

Symbolics)
• Design tools that will adapt to other hardware platforms

• Design tools that demonstrate the advantages of an object

oriented database system

• Design tools that can be integrated with both analysis and

requirements tools and with code generation tools in

programming environments.

IDEF3 and IDEF4 are powerful description capture and designautomated tools for
methodologies. The development of prototype
these methods provides a showcase for the capabilities of the

methods as well as the opportunity to demonstrate the effect that

new technologies can have on the development of software systems.

To effectively automate the methodologies requires that the tools

exhibit certain functional qualities such as knowledge based

operations, multi-mode editing capability, an no redundant data

entry, among others. In addition to this, the tools must provide the

user with a robust set of capabilities that will allow them to easily

model and design their systems. It is for these reasons that the

design goals enumerated above have strongly influenced the design

of the prototype IDEF3 and IDEF4 tools.

Philosophy of Operation
Knowledge Based Systems, Inc.

8

3.0 Functional Summary

The focus of this document now shifts to the actual designs of the

IDEF3 and IDEF4 tools. This section describes the components that

will make up the two tools and what functionality each component

will provide. As such, this section will provide a mapping between

the components of the two tools and the functional requirements

defined for the two tools in "IDEF3 and IDEF4 Automation System

Requirements Document and System Environment Model".

3.1 IDEF3 Functional Operation

Conceptually, the IDEF3 tool will consist of several interacting
utilities:

Unit of Behavior Pool Browser

Object State Browser

IDEF3 Process Flow Diagram Facility

Object State Transition Diagram Facility

The Unit of Behavior Pool Browser will provide a listing of all the

Units of Behavior that have been defined within the current scenario.

The browser will provide the ability to find what process

descriptions make use of a specific UOB, obtain information on the

UOB's elaboration and decompositions, as well as modify the UOB.

The Object State Browser will provide a listing of all Object States

that have been defined within the current scenario. This component

will support the selection, modification, and viewing of the various
object states.

The Process Flow Diagram Facility allows the UOBs, Links, and

Junctions to be laid out into a valid process flow description. This

mode will allow movement between different descriptions that are

part of the same scenario as well as view the decompositions of UOBs

that make up a process flow description.

The Object State Transition Diagram Facility provides the capability

necessary to define a valid Object State Transition network. It will

allow for the addition of object states to the diagram, the

specification of transition arcs between objects states, and the

labelling of transitions arcs with other state transition diagrams.

Functional Summary Knowledge Based Systems, Inc.

9

Figure 1 provides a mapping between these components and the

functional requirements defined in the requirements document. The

sections mentions in the diagram refer to sections in the IDEF3 and

IDEF4 Automation System Requirements Document. Notice that a

certain degree of overlap exists between the various modes. This

characteristic gives the domain expert the greatest degree of

freedom in developing the process descriptions and should allow for

the rapid development of those process descriptions.

Unit of Behavior Operations
(Section 3.1.1.1)

Link Operations
(Section 3.1.1.2)

Junction Operations
(Section 3.1.1.3)

Reference Operations
(Section 3.1.1.4)

Elaboration Operations
(Section 3.1.1.5)

Object State Operations
(Section 3.1.2.1)

Transition Arc Operations
(Section 3.1.2.2)

Scenario Operations
(Section 3.2.1)

Decomposition Operations
(Section 3.2.2)

Information Management
Operations (Section 3.5)

IDEF3
Process

Flow

Diagram
Facility

Object
State

Transition

Unit of
Behavior

Pool

Diagram
Facility

Browser

Object
State

Browser

-4 -4

,j

-4 ,J

-4 -4 -4 -4

-4 -4

J

i

-4 -4 -4 -4

Figure 1. IDEF3 Functional Matrix

Functional Summary Knowledge Based Systems, Inc.

10

3.2 IDEF4 Functional Operation

Conceptually, the IDEF4 tool will consist of several interacting modes
of operation as well:

Class Submodel Browser

Feature Pool Browser

Method Submodel Browser

IDEF4 Diagram Facility

The Class Submodel Browser will provide a listing of all classes that

have been defined in the current design. With each class, the user is

able to access and modify the information associated with a class,

such as its features and its related parent or child classes. Changes to

a class' relationship with other classes will be automatically reflected
in any diagrams in which the class occurs.

The Feature Pool Browser will provide a listing of all features that

have been defined in the current design. The features will be

defined as separate objects in this system to allow for the situation

where a feature will be defined, but the class to which the feature

will belong has not been decided. Accordingly, within the Feature

Pool Browser, the designer will have the ability to assign a feature to

a particular class in addition to the normal feature operations such as
creation, editing, and deletion.

The Method Submodel Browser will provide a listing of all method

sets that have been defined in the current design. In this browser, it

will be possible to view information associated with a method set, as

well as modify that information. The most important operations to

be supported within this mode is the creation, editing, and deletion

of method sets, the specification of taxonomic links between method

sets, and dispatch mapping between a method set and a feature of a
class.

Finally, the IDEF4 Diagram Facility provides for the generation and

manipulation of all the diagrams specified in an IDEF4 design. Also

within this facility, the designer will have the ability to make

changes to classes, features, and method sets that participate in the

diagram. This will prevent unnecessary changes between the

various object browsers and the diagram facility.

Functional Summary Knowledge Based Systems, Inc.

11

Figure 2 displays a mapping between these four units that will make

up the IDEF4 tool and the functional requirements defined in the

requirements document. The sections referred to in the diagram are

sections in the IDEF3 and IDEF4 Automation System Requirements

Document. Notice that there is a certain degree of overlap between

the tool components and the operations that the components support.

This characteristic will provide the user with the greatest degree of

flexibility in defining and modifying their system design by limiting

the number of mode changes required to make adjustments to the

design.

Class Operations
(Section 4.1.1)

Feature Operations
(Section 4.1.2)

Inheritance Link Operations
(Section 4.1.3)

Type Link Operations
(Section 4.1.4)

Method Set Operations
(Section 4.1.5)

Class Inheritance Diagram
Operations (Section 4.2.1)

Type Diagram Operations
(Section 4.2.2)

Protocol Diagram Operations
(Section 4.2.3)

Method Taxonomy Diagram
Operations (Section 4.2.4)

Client Diagram Operations
(Section 4.2.5)

Customized Diagram
Operations (Section 4.2.6)

Information Management
Operations (Section 4.5)

IDEF4
Diagram

Facility

q

Class
Submodel
Browser

Feature
Pool

Browser

Method
Submodel
Browser

4

4

4

#

4

4 4

4

q

4

#
i

,4

4 q

Figure 2. IDEF4 Functional Matrix

Functional Summary Knowledge Based Systems, lnc.

12

4.0 Automated IDEF3 and IDEF4 Tool Design

This section provides a detailed description of the current design for
the Automated IDEF3 and IDEF4 Tools. The section will make use of

IDEF3 and IDEF4 descriptions to relay the tool design as well as

textual discussion to elaborate on the design and to explain why

certain design choices were made. IDEF4 diagrams will define the

data structures (objects) that will exist within the IDEF3 and IDEF4

tools while IDEF3 process flow descriptions will be used to relay the

interactions a person would have with the tools while developing

their process descriptions or object oriented designs.

4.1 IDEF3 Design Components

Up until now, the discussion has been focused on both the IDEF3 and

IDEF4 tools. At this time, a more detailed analysis of the IDEF3

design will be presented while the IDEF4 design will be presented in

Section 4.2. This discussion begins with the definition of the classes

that will exist within the IDEF3 system along with their inheritance

relationships to each other.

4.1.1 IDEF3 Data Structures

IDEF3 Element I

! @ Description" String I

IGlossary Mixin

@ Name • Symbol
@ Label" String

ID Mixin

Figure 3. IDEF3 Mixin Classes Type Diagram

Figure 3 displays the type diagram of three classes that will be used

for 'mixin' purposes. What this means is that instances of these

classes will not exist within the IDEF3 system. Instead, the

characteristics of these classes will be 'mixed' into other classes

through feature inheritance. These classes represent a group of

features and functionality that are common to several classes in the

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

13

system. As a result, these common elements are pulled out into their
own classes so that the code to implement the operations will be

developed only once.

4.1.1.1 IDEF3 Element

This class represents the basic functionality required for

the manipulation, display, and presentation of any element

in the IDEF3 system. As yet, no features have been

identified, but various display operations have been

defined for the IDEF3 elements.

4.1.1.2 Glossary Mixin

This class represents a textual description that will be

attached to instances of classes that inherit from this class.

The only feature defined for Glossary Mixin is Description,

a slot accepting a value of type String. This description

captures information explaining the purpose for the object

to which the description is attached.

4.1.1.3 ID Mixin

This mixin class will be used for identification purposes.

Its two attributes, Name and Label will be used to

uniquely identify an object. The Name slot accepts values

of type Symbol while the the Label slot accepts values of

type String. In cases where only the name is required to

uniquely identify an object, the label attribute will take a

nil value.

Figure 4 contains the type diagram for the objects that make up the

process flow descriptions. This diagram describes the individual

objects that make up the process descriptions as well as the

organizational objects that structure the description.

4.1.1.4 Linkable Object

This class is really a mixin class but was included in this

diagram to indicate its features' return types. The purpose
of this class is to indicate that any instance of a class that

mixes in Linkable Object can be linked to other objects. As

such, a linkable object can have a link coming into the

object (In Link) and a link leaving the object (Out Link).
These attributes return values of type Link.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

14

? In Link
? Out Link

Linkable Object

? Links
? Junctions
? References

? Objects: _)bject

Process Descri

? IDEF_3Ref.' Symbol
? Elaboration)

? Decompositions)
? References : _ Referent

UOB

@ Type : Keyword
? Objects" OObject
? Front : t
? Back : t

Link

_ct

? Facts: }Fact
? Constraints' OConstraint

Owner UOB

@ Type" Keyword
? Owner UOB

Scenario [

@ Timing:

Junction

@ Type : Keyword
? Page #" Symbol
? Referenced Object' t

Figure 4. Process Flow Objects Type Diagram

4.1.1.5 Scenario

The Scenario class is an organizing structure that

represents the highest level of organization in an IDEF3

description. An IDEF3 process flow description consists of

several levels of process descriptions, where a UOB can be

described in greater detail by attaching decompositions to

that UOB. However, the top level process description is not

a decomposition. Instead, this top level is a scenario. The

scenario class does not have any owned features because

the scenario is just a special case of a decomposition. The

scenario's functionality will be derived through inheritance

relationships to be discussed later in this section.

4.1.1.6 Process Description

The process description is the basic organizing unit in a

process flow description. This class will maintain all the

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

15

objects that are part of a certain process flow description.
UOBs is an attribute that will access the list of UOBs that

are part of the process description. The attribute Links

will maintain a list of links that relate the UOBs, Junctions,

and Referents in a process description. Junctions is an
attribute that will maintain a list of all Junctions in the

description. Referents is an attribute that will maintain a

list of Referents that occur in the process description.

Finally, Objects will be a list of Objects that are somehow

manipulated within this process description.

4.1.1.7 Decomposition

The Decomposition class represents an object that is

associated with a Unit of Behavior. A decomposition gives

a more detailed description of its parent UOB. A

decomposition can be one of two types: objective or view.

The Type attribute will indicate what type a particular

decomposition is. The Decomposition class must also be
attached to a Unit of Behavior. The Owner UOB attribute

will provide a link to the Unit of Behavior to which the

decomposition is attached.

4.1.1.8 UOB

The UOB class represents the Unit of Behavior entity in

IDEF3. Every UOB has an identifying node number that is a

Symbol. There is also an optional IDEFO Ref. attribute.

This Symbol, if provided, will reference an IDEFO activity

that the UOB is somehow associated with. A UOBs

Elaboration will be referenced through the Elaboration

attribute and the UOBs decompositions will be referenced

through a list of decompositions maintained by the

Decompositions slot. Finally, the UOB class also has a

Referents attribute. This feature was added mainly to

make the implementation of some functionality easier. Its

purpose is to keep a list of all Referents that make use of

this UOB. This will make searching for references to this
UOB much easier.

4.1.1.8 Elaboration

The Elaboration class represents the IDEF3 Elaboration.
The Owner UOB attribute takes a UOB as its value and is a

link between an Elaboration and the UOB that the

elaboration describes. The other three attributes maintain

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

16

the information that make up the elaboration. Objects

keeps a list of objects that are somehow manipulated by

the UOB. Facts keeps a list of facts that define the current

state of the objects. Finally, Constraints maintains a list of

constraints that the objects must satisfy.

4.1.1.9 Referent

The Referent class represents the IDEF3 Referent. A

referent has three features: a keyword type, indicating the

type of reference being made; a Page # symbol,

representing the page number where the reference is

described further; and a Referenced Object, accessing an

object that is being referenced.

4.1.1.10 Junction

The Junction class provided for branching in the process

descriptions. A junction has a Type, indicating And, Or, or

XOR, and a Timing, indicating Asynchronous or

Synchronous, attribute. Both of these attributes accept

keyword values.

4.1.1.11 Link

The Link class defines the relations between linkable

objects. A link can have a Type to specify whether it is a

precedence, object flow, or relational link. If the link is an

object flow link, then the objects that flow through the link

are attached to the Objects attribute. Finally, the two

linkable objects that are related by the link are specified
by the Front and Back attributes.

Figure 5 presents the type diagram for the classes defined for the

Object State Transition Diagrams in IDEF3. These diagrams define the

various states that an object may exist in as well as the constraints

that must be satisfied before a transition can take place.

4.1.1.12 Object

The Object class simply represents an object that play

some role in a process description and is somehow affected

by that process description. Its Elaborations attribute

refers to any Elaborations in the process description that

refer to this object while the Flows attribute references

any Object Flow links that indicate this object is to flow
between two Units of Behavior.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

17

? objectStates) [

? Transition Links

Object State Transition]

? Front
? Back
? Referent: Referent

? Object State Transition m

Transition Link

____ '! Object

? Attribute Value Pairs
? Pre-trans Restrictions
? Post-trans Restrictions

Object State

? Elaborations :0Elaboration
? Flows :0Link

Attribute'Symbol
? Value' t
? IDEF1 Ref." Symbol

Attribute Value Pair

Figure 5. Object State Objects Type Diagram

4.1.1.13 Attribute Value Pair

The Attribute Value Pair class will be used to define object

states and constraints on object. The pair will represent an

object attribute and a value that the attribute must adhere

to for the state to exist of the constraint to be satisfied.

The Attribute feature refers to the attribute of the object.,

the Value feature indicates the value that the Attribute

must take, and the IDEF1 Ref. feature indicates an IDEF1

Attribute Class with which the Attribute is associated.

4.1.1.14 Object State

The Object State class is used to define the state of an

object. The Object attribute references the object for which

the object state is being defined. The list of attribute value

pairs maintained in the Attribute Value Pairs attribute

actually defines the state while Pre-trans Restriction and

Post-trans Restriction attributes maintain lists of constraint

defining attribute value pairs that must be satisfied before

beginning a transition and before completing a transition,

respectively.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

18

4.1.1.15 Transition Link

The Transition Link defines a transition between two

object states. These two states are referred to by the Front
and Back attributes of the link. Also, the link can have a

referent attached to it through the Referent attribute to

indicate a process flow that must be executed to effect the

transition. Similarly, another object state transition

diagram can be attached to a link through the Object State

Transition attribute to specify another transition network

breaks this transition down into further detail.

4.1.1.16 Object State Transition

The Object State Transition class represents the organizing

structure of the object state transition diagram. It keeps

track of all object states and links that are defined in the

diagram. The Object States attribute keeps a list of objects

states used in the diagram while the Transition Links

attributes keeps a list of the transition links that are

defined in the diagram.

I Glossary Mixin I IDEF3 Element

? UOBs
? Links
? Junctions
? References

? Objects

Process Description

@ Name

@ Label

ID Mixin

Scenario
? Owner UOB

,sition

Figure 6. IDEF3 Organization Objects Class Inheritance

Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

19

Figure 6 presents the Class Inheritance Diagram for the

organizational structures of IDEF3. The most important fact

represented here is that both a Scenario and a Decomposition are

Process Descriptions. The main difference is that a scenario is a

named process description while a decomposition has no name, but is

instead referenced by attaching it to a UOB (Owner UOB). A

Decomposition also has a Type attribute that a scenario does not

require. Also notice that the Scenario class inherits all of its

characteristics from the Process Description class and the ID Mixin
class.

Figure 7 presents the class inheritance diagram for the process

description elements of IDEF3. To begin with, all five objects

(Elaboration, Link, Junction, UOB, and Referent) inherit from IDEF3

Element and Glossary Mixin. More interestingly, notice that, of these

objects, only UOBs and Referents inherit from ID Mixin. As a result,

instances of the other classes must be references through other

means. Finally, also note that UOB, Junction, and Referent inherit

from the Linkable Object class, indicating that instances of these

classes can be specified as the front or back object of a link.

Finally, Figure 8 presents the class inheritance diagram for the

classes that define the Object State Transition diagrams. This is a

pretty uneventful diagram as all five classes, Object State, Object,

Transition Link, Object State Transition, and Attribute Value Pair,

inherit from Glossary Mixin, IDEF3 Element, and ID Mixin.

Automated IDEF3 and 1DEF4 Tool Design Knowledge Based Systems, Inc.

2O

I

e-

Figure 7. Basic IDEF3 Objects Class Inheritance Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

21

Ill
Ill

m m

e-

_2
f_

m

w

inn

@l

m

-

Figure 8. Object State Transition Objects Class Inheritance
Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

22

4.1.2 IDEF3 User Interface and Constraint Enforcement

At this point, the focus of the IDEF3 design description shifts from

the objects to be manipulated by the system to the processes that are

performed to actually manipulate those objects. Appropriately,
IDEF3 process flow descriptions will be used to relate these

processes. It is hoped that these process descriptions will give the
reader a feel for what it will be like to use the IDEF3 tool. To assist

in achieving this goal, some UOBs will have Referents attached to

them that point to representative screens. These screens will be

drawings of the screen that the user will encounter at that point in

the development process. The discussion of the IDEF3 descriptions

will indicate any constraints that must be satisfied by a particular
process.

NOTES:

(1) In these IDEF3 descriptions, the numbering

convention of Units of Behavior have been changed.

Because every UOB in these descriptions have only

one decomposition, if any, the decomposition number

after the 'v' in the UOBs has been dropped. For

example, if a UOB, 1, had a decomposition with a UOB

numbered 3 in the decomposition, that UOBs node

number would have been 1.vl.3. Instead, in the

following diagrams, the node number would be 1.v.3.

Also, due to the diagram size, the prefix of the UOBs

is being removed and placed in the top left corner of

the diagram. This notation will simplify the

numbering scheme of these diagrams as the number

of decompositions increases.

(2) The UOBs that have shadowed boxes are UOBs that

have decompositions defined for them.

(3) A special character, ¥, is placed in the upper left

corner of a UOB to indicate that that particular UOB
represents an explicit user action. UOBs without that

character represent general procedures of processes

performed by the tool.

(4) Throughout the process descriptions, certain UOBs

that indicate user actions have referents attached to

them labelled "See IDEF3 Screen #". Sketches of the

proposed screens for the IDEF3 tool have been

created and can be found at the end of this section.

These referents are refering to these screens so that

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

23

the reader can get a feel for what the system will

look like when performing certain operations.

There is one aspect of the IDEF3 tool that was not described in the

process descriptions because of the added complexity it would add to

the descriptions. During the execution of any of the process

supported by the tool, it is possible for the user to abort out of the

process. The effect of this abort is to return to the state that existed

before the aborted process was started.

To begin with, Figure 9 shows the top level process for the

User/IDEF3 Tool Interaction Scenario and its decomposition. Once

the tool has been started, a new description database is created or an

existing description database is opened. The user then decides what

mode of operation (see Section 2.1) they wish to work in and then

begins the development of the process flow description and the

object state transition diagrams. The UOBs 1, 1.v.1, and 1.v.2 all

reference activities defined in the IDEFO model of IDEF3 that can be

found in "IDEF3 and IDEF4 Automation System Requirements

Document and System Environment Models".

I Develop Idef3

Description

1 [A1
Decomposition: 1.v.

Open I

Create I

Pick Mode

__ Formulate I
Process Flow |

Description |

1 IA13 !

.__ Summarize II
Object State I

Transition I

2 IA14 I

Figure 9. User/IDEF3 Tool Interaction Scenario

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

24

Decomposi{Jon:1.v.1.v.

Figure 10.

Select
Scenario

Edit
Process

__ Create I

__ Delete [

Scenario F

" I /

__ Copy/Coerce [

Scenario F

I /

,._ Create

Decomposition

'6 I

Decomposition of Formulate Process Flow

Description

Figure 10 displays the decomposition of the Formulate Process Flow

Description process. At this point, the user can create an entirely

new scenario, select an existing scenario for editing purposes, delete

a sceanario, copy an existing scenario or coerce a scenario into a

decomposition, or can create a new decomposition. Once one

(because of the XOR junction) of these actions is performed, the user

can begin the process of editing a process description.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

25

Decomposition: 1.v.l.v.6.v.

v Pick UOB

i1 tDec°mDTs_

Screen #2:
UOB Decomposition

Browser

IiP,ckTypeof IDecomposition I

,, I I

Screen #6:

Pop-Up
Pick From List

lib..=
v

Figure 11. Decomposition of Create Decomposition

Figure 11 displays the decomposition of the Create Decomposition

process. In performing this operation, the user must specify the UOB

for which the diagram is being created and the type of decomposition

being created (Objective View or View). Also notice the references to

the IDEF3 screens that will be active during the execution of this

process.

Figure 12 presents the decomposition of the Edit Process Description

UOB. An important fact to note about this description is that there is

an implicit loop around this particular process. It would not be very

useful to be able to execute only a single command. Instead, once a

command has been executed, the user can begin processing another

command by using this same process. This description also indicates

the mode of interaction between the user and the system. There are

two different ways to execute a command, by either clicking on a

command in the command menu or by typing the command at the

command line. Also note the the File (database) and Mode

operations are available only through the command menu.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

26

Decomposition: 1.v.1 .v.l.v.

¥ Click on

Command

6 I

r_ Chose Object I

17 I I I

Type Command

Process UOB I

Command I

I i

I Process Link

"--P'I Command

12 I

I Process I
I Junction I

"-'1 Command I
I I

Process
Referent
Command

Process

Elaboration
Command

J Process
- File

I Command

__! Pick Mode

Figure 12. Decomposition of Edit Process Description

Figure 13 displays the decomposition of the Process UOB Command

process. A variety of different commands for the manipulation of

UOBs will be available, each requiring their own execution process.

Notice that the screen reference indicates that these operations will

be performed in the Process Description Diagram. Some of these

operations will also be available in the UOB Decomposition Browser.

Constraints:

The UOB operations have certain constraints that must be satisfy for

the operation to be carried out successfully:

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

27

• The Copy UOB operation requires that the name of the UOB be

changed.

• When a UOB is deleted from a process description, any Referents

that refer to that UOB must be updated to reflect the deletion.

C¢_ete New
UO8

tO Ed=t

Su bruit New

UOB to

Remove UOB

_rom D,,tta,bas,e

•See r_lln o tO

Remove Links

from UOB

Figure 13. Decomposition of Process UOB Command

Figure 14 displays the decomposition of the Process Link Command.

The most significant thing to point out here is that a link will be

created between existing objects. As a result, the user selects the

objects that are to be related by a link.

Constraint:

• A linkable object can have only one link into itself and one link

out of itself. As a result, links can only be created between

linkable objects that have not exceeded these limits.

• When a link is created between a Junction and some other

objects, the resulting structure mu.st be analyzed to determine if

the structure is valid. For example, if an fan-out XOR junction is

eventually linked with a Synchronous AND junction, the

structure is invalid since the AND requires multiple processes to

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

28

terminate while the XOR allows only one process to begin

execution. This situation cannot be allowed.
DIt_:rt_:+oslhon 1 v 1.v.1 v 2.v.

which tO Add Add to Junction

UOB's

Add UOB's

to hnk

which to Delete

UOBs

Choose U08'$ Delele UOB's

10 De_ete from from Link

Pick Junct_n

and I Or More

UOB's

Sutx_t Link
C¢eat Dnk to Database

Cardinality

end Back UOB

Link Cm'd_ n"ditY

and Type

Remove Link

from

RemoveL{_

From Referent

Figure 14.

Oecom_n:Ivlvl.v3v

Create New

Junction

Decomposition of Process Link Command

rife i_o Junction

D=splay f Accept

Juriotion Junction

Echt Window +nfo

Choose Create New Copy Junctton Subma New

Juncbon Junction in|o into New Junction to

Upciate

Dm_lay

L..._ c_oo_ LJ I R,mov+ I J Remove I
Junction _ JureIion from _ Junction i

to 13alntA r---1 Link J J from Database |

I _ I I I '° I 1 I,,] I

Figure 15. Decomposition of Process Junction Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

29

Figure 15 displays the decomposition of the the Process Junction

Command. The junction commands are relatively straightforward as

is obvious by the relatively simple process diagram.
Constraints:

• When a Junction is deleted, those links that are connected to the

junction should also be deleted.

Deoompos_Uon lvlvl v4 v

Create New

Reverent

=lace Referent D,s_lay

tnto Referent Referem Referent

_drt Window info

Choose Create New Copy Referent Subma New Update

Referent Referent info into New FIoferent to D,'s,olay

Choose Remove

Referent Referent

from Database

Figure 16. Decomposition of Process Referent Command

Figure 16 displays the decomposition of the Process Referent

Command. These operations will be available in any of the IDEF3

modes since Referents can be used in many different contexts.

Figure 17 displays the decomposition of the Process Elaboration

Command. Though there is no Referent to indicate it in this

description, these operations can be performed in the Process

Description mode or in the UOB Decomposition Browser.

Constraints:

• Only one Elaboration can be associated with any given UOB.

• When an Elaboration is deleted from a UOB, if that UOB has an

Objective View Decomposition, that decomposition must be

redefined as a simple View Decomposition.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

3O

Decom_n:IvlvlvSv

Creale New

Elaboratuon

Choose

UOB

' Choose

Elaboratmn

VChoose

Elaboration

Choose

Elaboration

Process Row

D_agr_m

Crea'te New

Elaboration

Remove

Elaboration

Update

D_play

Figure

Decomposition: 1 .v.2.v

17. Decomposition of Process
Command

Elaboration

on

Command
Type

Object

Process

Object State

Transition Arc

Command

Process

Proc. Descr.

Diagram Commar_l

Figure 18.

Process I
[File

Command

J Pick Mode J

Decomposition of Summarize Object State
Transition

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

31

Figure 18 presents the decomposition of the Summarize Object State

Transition process. The operations at this level are very similar to

the process flow operations. The only difference is the different

modes of operations that are used for Object State Transition

Diagrams.

Screen _5 I

Dec_nposi_o_: I v2 v4v E_t Into

Create New

o=,,, I !'_o._o0, I

I I , I I I_...ilXl._.._nfo,ntoObjSuttd/_" 1 O_loctStale i._iblStat. [J "-'_ r";_'°T" I 1:°'_7°* i PP--r----I

1.o. ob,e_L/CreataNew I I 0o_,0_, I I n':_ _' I
State Stateinfo,nto _ IX I-=" ob_ctst=,_oI

• _ Object 9 I I_.,.v2_.,,, i _ ,._.._ Database[

l
St== _ C_JrrentOqagr_'l _

'" ' ' t
'_..... _ I I I o.*taObj I I
I Browser | _ D_ram_ _'

UW,_ate

D_oLay

Figure 19. Decomposition of Process Object State
Command

Figure 19 displays the decomposition of the Process Object State

Command process. The operations on an Object State in a Transition

Diagram are very similar to the operations that would be performed

to a UOB in a process description diagram: These operations will be

available in the Object State Transition Diagram mode or in the Object
State Browser.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

32

Decomposl_on: lv2_'_ q

Create New

Transition Arc

Screen #5

Edd Into

Info O,splay _Accep! TA

Oblect State rote

¥Choo_,e

Transition Arc

Choo_e Copy TA info Submit

Transilion into New TA TA to

Database

YChooseTran Remove

Arc Trans¢ion Arcs

Up(_.te

Dusplay

Figure 20. Decomposition of Process Transition Arc
Command

Figure 20 shows the decomposition of the Process Transition Arc

Command. Its operations are very similar to the Link operations in
that the arc must be specified between existing object states. These

operations will be available only in the Object State Transition

Diagram mode.

Decoc_ositlon 1 W2 v6

Create New

Proc Desc

P_ck UC_ or

Scenario to

¥Choose

Proc Oesc Net;
Pop-Up Pick
From List

¥Choose Proc Create New Copy PDNR Submit New

Desc Net Ref Proc Desc infolnto New PDNRto

ChooseProc Oesc Remove

Net Pet PDNR from the
Io De4ete

Update

Display

Figure 21. Decomposition of Process Process Description

Diagram Command

Figure 21 displays the decomposition of the Process a Process

Description Diagram Command. The purposes of these operations is

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

33

to attach a process description to a transition arc. The semantic

effect of doing this is to indicate that the process attached to the link

will effect the transition between object states linked by the arc.

Figures 22 through 27 display potential screens that will exist within

the IDEF3 system and are the screens that are referenced within the

process descriptions. These screens are meant only to give a rough

idea of how the tool screens will appear. Figure 22 shows a potential

Process Flow Diagram screen. Figure 23 displays the Unit of Behavior

Decomposition Browser. Figure 24 shows the Object State Browser.

Figure 25 shows the Object State Transition Diagram screen. Figure

26 displays an Input/Edit Pop-up Window. Finally, Figure 27

displays a Pick From List Pop-up Window.

Process Flow Dlat]ram

Commands Scenario: Idol3 Tool Process Decomposition: 1.v.1,v,1 .v.2,v

Create

Copy

Edit

Delete

Coerce

Remove Link
From UOB(s)

I

Remove Link
From Junction(s)

I

Hemove Link
From
Referent

I

Command:

Figure 22. IDEF3 Screen #1 Process Flow Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

34

UOB Decorpoostion Browser

Create

Copy

Edit

Delete

Coerce

Deve+op IDEF 3 Description

1.v.1 - Formulate Process Flow Description

1,v.1 .v.1 - Edit Process Description

1,v.2 - Summarize Object Stale Transition

Command:

Figure 23. IDEF3 Screen #2 UOB Decomposition
Browser

Object State Browser

Commands

Create

Copy

Edit

Delete

Coerce

Object State One

Art-value Pair One
A_t-valuePair Two

Pre-Requirement
Post-Requirement

Command:

Figure 24. IDEF3 Screen #3 - Object State Browser

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

35

Oblect State Diaaram

Commands

Create

Copy

Edit

Delete

Coerce

I Post

Requirements

I One

F m

i Post
Requirements

" I
Objecl Pre
State Requirements I

One One
I

Objecl Pre I
State Requirements

Two Two I

Command:

Figure 25. IDEF3 Screen #4 - Object State Transition

Diagram

Generic Edit PoD-Up Window

Name: I

Selection: type 1 type 2 type 3

Value I

n Dolt [] Cancel

Figure 26a. IDEF3 Screen #5a - Edit Pop-up Window

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

36

Generic Text Edit Windqw

XXXXXXXXXXXXXXXXXXX

XXX

XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

Figure 26b. IDEF3 Screen #5b Text Edit Pop.up Window

Generic Pick From List POD-UD

Item One
Item Two
Item Three
Item Four
Item Five
Item Six

Figure 27. IDEF3 Screen #6 - Pick From List Pop-up
Window

4.2 IDEF4 Design Components

At this time, a more detailed analysis of the IDEF4 design will be

presented. This discussion begins with the definition of the classes

that will exist within the IDEF3 system along with their inheritance

relationships to each other. After the classes have been defined, the

IDEF4 processes that manipulate instances of those classes will be

described. These processes will give a feeling for how the user will

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems. Inc.

37

interact with the IDEF4 tool to effectively design an object oriented

system.

4.2.1 IDEF4 Data Structures

IDEF4 Element]

@ Description : String

Glossary Mixin

@ Name : Symbol
@ Label: String

ID Mixin

Figure 28. IDEF4 Mixin Objects Type Diagram

Figure 28 displays the type diagram of three classes that will be used

for 'mixin' purposes. The term 'mixin' serves the same purpose here
as it did in the discussion of the IDEF3 mixin classes. These classes

represent a group of features and functionality that are common to

several classes in the system. As a result, these common elements

are pulled out into their own classes so that the code to implement

the operations will be developed only once.

4.2.1.1 IDEF4 Element

This class represents the basic functionality required for

the manipulation, display, and presentation of any

element in the IDEF4 system. As yet, no features have

been identified, but various display operations have been

defined for the IDEF4 elements.

4.2.1.2 Glossary Mixin

This class represents a textual description that will be
attached to instances of classes that inherit from this class.

The only feature defined for Glossary Mixin is Description,

a slot accepting a value of type String. This description

captures information explaining the purpose for the object

to which the description is attached.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

38

4.2.1.3 ID Mixin

This mixin class will be used for identification purposes.

Its two attributes, Name and Label will be used to

uniquely identify an object. The Name slot takes Symbols

as its value while the Label slot accepts Strings as its value.

In cases where only the name is required to uniquely

identify an object, the label attribute will take a nil value.

Figure 29 displays the type diagram for the remaining classes that

will make up the IDEF4 system. These classes map very closely to

the IDEF4 entities that were described in the requirements

document. One special note should be made on some of the Feature

types. Notice that the Front and Back attributes of the Link class,

among others, accept values of type t. This notation is used to

indicate that the actual type accepted by the attribute is more

complex than could be indicated in the type diagram. The actual

type of each of these attributes will be discussed with the

explanation of the class definition below.

4.2.1.4 Class Grouping

The Class Grouping class will be used as a 'mixin' class. Its

one attribute, Classes, will maintain a user specified list of

classes. The classes main use will be to maintain the list of

classes that appear in specific diagrams.

4.2.1.5 Class

The Class class defines the basic unit of an IDEF4 design.

Each Class has a list of Features Uses and a Class Invariance

Data Sheet associated with it as well as a list of parent

classes, Superclasses, and a list of child classes, Subclasses.

It is through these last two features that the inheritance

relationships are maintained in the class submodel.

4.2.1.6 Method Set

The Method Set class maps directly to the IDEF3 Method
Set. The Contracts attribute maintains the method set's

contract specifications while the Mappings attribute links

the method set with Class-Feature pairs that are

dispatched to this method set.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

39

!
i

]

Figure 29. IDEF4 Objects Type Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

4O

4.2.1.7 Link

The Link class is used to specify a relationship between

two IDEF4 objects. The most notable links will be the

subset/superset relationship in Method Taxonomy

diagrams and the caller/callee relationship in Client

diagrams. The Front and Back attributes indicate the

objects that are related by the link. Notice that these

attributes accept values of type t, indicating that the

attribute type can vary with the context of the link use.

4.2.1.8 Feature

The Feature class represents an IDEF4 class feature. In the

tool, though, a feature exists as a separate object, as

opposed to a part of a Class, since a feature can be used
and redefined in several different classes through

inheritance. By creating a feature as a separate object, the

functionality of the feature can be represented only once

while the tracking of feature use and feature redefinition

can be accomplished by other means. The Root Class
attribute indicates the class that is said to initially define

the feature. It is from this root class that it is determined

if later uses of a feature result in redefinitions of the

feature. The Uses attributes maintains a list of all classes

that use the feature through class inheritance. The Default

Type attribute specifies a default feature type to associate

with the feature when no other type has been specified.

The Default Role attribute serves the same purpose as the

Default Type, except that it specifies the role that the

attribute will assume (i.e., attribute, function, slot, etc...).

4.2.1.9 Feature Use In Class

The Feature Use In Class class is the method by which the

IDEF4 tool will track the inheritance and redefinition of

features. This class defines a 'use' link between a class and

feature. The Feature attribute references the feature to be

used while the Class attribute references the class that will

use the feature. When a feature is used, its type and role

can be redefined. The Type and Role attributes exist to

capture the type and role that the feature is to have for

the particular class. A Feature Use also has a Type Display
Mode to indicate how the feature type should appear in a

Type Diagram and Method Set attribute that maps this

Class-Feature pair to a specific method set.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

41

4.2.1.10 Argument

The Argument class is used to represent information that

will appear in a Protocol Diagram. IDEF4 allows a protocol

to be defined for features of classes. This protocol specifies

a list of arguments to the feature as well as the types of

those arguments. The argument class captures the name of

an argument to a protocol along with the type of that

argument.

4.2.1.11 Contract

The Contract class provides the definition of a Method Set.

When a feature maps to a method set, it can attach a

requirement that must be fulfilled by the method set. This

requirement is called a contract. A contracts only attribute

is its Specification, a string of information that describes

the contractual requirement for the feature.

4.2.1.12 Diagram

The Diagram class represents a graphical display object

within the IDEF4 system. It has no features of its own but

will provide basic functionality required for the display of

the more specific IDEF4 diagrams.

4.2.1.13 Class Inheritance

The Class Inheritance class represents the IDEF4 Class

Inheritance Diagram. This class has no owned features, but
does inherit features as will be discussed later in this

section.

4.2.1.14 Type Diagram

The Type Diagram class represents the IDEF4 Type

Diagram. This class has no owned features, but does
inherit features as will be discussed later in this section.

4.2.1.15 Protocol

The Protocol class specifies the protocol diagram for a

particular feature use. The Feature attribute accepts a

Feature Use in Class object as its 'value that will define the

feature/class pair for which the protocol is being defined.

The Arguments attribute is simply a list of Argument

objects that define the argument list of the protocol.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems. Inc.

42

4.2.1.16 Method Taxonomy

The Method Taxonomy class organizes the method

taxonomy diagrams. This class maintains the list of

method sets that will appear in the diagram (the Method

Set attribute) and the list of links that specify the

taxonomic relationships between the method sets (the

Links attribute).

4.2.1.17 Client

The Client class organizes the IDEF4 Client diagrams. This

class tracks the list of feature/class pairs that are to

appear in the diagram (the Feature Uses attribute) as well

as a list of the caller/callee links that exists between the

class/feature pairs (the Call Links attribute).

? Feature

? Type
@ Role

@ Type Display Mode
? Class
? Method Set

Feature Use in Class

? Feature Uses
? Class Invariance

? Superclasses
? Subclasses

Class

? Root Class
? Uses

?Default Type
@ Default Role

Feature

? Contracts

? Mappings

Method Set

Figure 30. IDEF4 Basic Object Class Inheritance Diagram 1

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

43

i Ca)Description tGlossary Mixin IDEF4 Element I
" @ Name I
• .@ Label

ID Mixin

? Specification ? Front ? Type

Contract ? Back Argument

Link

Figure 31. IDEF4 Basic Object Class Inheritance Diagram 2

Figures 30 and 31 show the inheritance relationships that exist

between the basic IDEF4 class structures. The relationships in these

two diagrams are pretty trivial: every class is an IDEF4 element and

every class has a glossary description associated with it. Probably

the most important thing to notice is that the Feature Use in Class

class in Figure 30 and the Contract and Link classes in Figure 31 do

not inherit the ID Mixin. This implies that uniqueness will be
determined by other means and that instances of these classes will

have to be accessed through other objects that refer to them. The

type diagrams above show how these classes will be related to other

objects within an IDEF4 design.

Finally, Figure 32 displays the inheritance structure of the IDEF4

diagram objects. The Diagram object inherits from IDEF4 Element,

Glossary Mixin, and ID Mixin. Since every diagram class inherits

from this Diagram class, every diagram will have a name and a

glossary entry associated with it. Also note that the Class

Inheritance and the Type Diagram classes inherit from the Class

Grouping class. This mixin class provides the feature necessary to
maintain a list of classes within the class instance. This list will

represent the classes that are to appear in that particular diagram
instance.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

44

I
°-Ii_- _°_

| -

i.

e-

J

_' ' It3

"- , IL)

5

Figure 32. IDEF4 Diagram Objects Class Inheritance
Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

45

4.2.2 IDEF4 User Interface and Constraint Enforcement

At this point, the focus of the IDEF4 design description shifts from

the objects to be manipulated by the system to the processes that are

performed to actually manipulate those objects. Appropriately,

IDEF3 process flow descriptions will be used to relate these

processes. It is hoped that these process descriptions will give the
reader a feel for what it will be like to use the IDEF4 tool. To assist

in achieving this goal, some UOBs will have Referents attached to

them that point to representative screens. These screens will be

drawings of the screen that the user will encounter at that point in

the development process. The discussion of the IDEF3 descriptions

will indicate any constraints that must be satisfied by a particular

process.

Since the IDEF3 methodology is in its infancy, development strategies

for producing process descriptions are non existent. In defining the

specifications for the prototypes, two different approaches of process

development were taken so that understanding of how well IDEF3

works in certain situations could be gained. The process description

of the IDEF3 tool was developed on a high level with considerable

textual elaboration. However, the IDEF4 tool process description was

developed on a lower, more specific level. As a result, there is very

little textual descriptions to coincide with the process descriptions.

Hopefully, both levels of description are sufficient for our purpose,

but comments on reader preferences would certainly be appreciated.

Because of the more detailed approach mentioned above, the IDEF3

description of IDEF4 has resulted in a extremely large number of

diagrams. In an attempt to simplify the tracking of the

decompositions of the UOBs, the diagrams defining the decomposition

for a UOB has been placed as close to the diagram that contains the

UOB being decomposed. The List of Figures may also prove helpful in

finding the various decompositions.

NO'IES:

(1) In these IDEF3 descriptions, the numbering

convention of Units of Behavior have been changed.

Because every UOB in these descriptions have only

one decomposition, if any, the decomposition number

after the 'v' in the UOBs has been dropped. For

example, if a UOB, 1, had a decomposition with a UOB

numbered 3 in the decomposition, that UOBs node

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc

46

number would have been 1.vl.3. Instead, in the

following diagrams, the node number would be 1.v.3.

Also, due to the diagram size, the prefix of the UOBs

is being removed and placed in the top left corner of

the diagram. This notation will simplify the

numbering scheme of these diagrams as the number

of decompositions increases.

(2) The UOBs that have shadowed boxes are UOBs that

have decompositions defined for them.

(3) A special character, ¥, is placed in the upper left

corner of a UOB to indicate that that particular UOB

represents an explicit user action. UOBs without that

character represent general procedures of processes

performed by the tool.

(4) Throughout the process descriptions, certain UOBs

that indicate user actions have referents attached to

them labelled "See IDEF4 Screen #". Sketches of the

proposed screens for the IDEF4 tool have been

created and can be found at the end of this section.

These referents are refering to these screens so that

the reader can get a feel for what the system will

look like when performing certain operations.

There is one aspect of the IDEF4 tool that was not described in the

process descriptions because of the added complexity it would add to

the descriptions. During the execution of any of the process

supported by the tool, it is possible for the user to abort out of the

process. The effect of this abort is to return to the state that existed

before the aborted process was started.

Decomposition 1.v

Design/Maintain]_

OO System with

,|

Figure 33.

]Use IDEF4 Design l
Evolve IDEF4 _ _to maintain OOPS

Design "--_Software

I /] A4
J

Design/Maintain OO System with IDEF4
Scenario

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

47

Figure 33 contains the first two levels of the IDEF4 tool process

description. The process of designing an object oriented system is

broken down into the three processes defined at the bottom of the

figure. Though these three processes are very similar in the

operations that are performed, the distinction is made to indicate

that different aspects of the design will be accessed during these

processes and that the processes will be performed by different

people. In this description, the focus will be on the Develop IDEF4

Design Representation Process.

Decompe_oo I v] v

Figure 34. Decomposition of Develop IDEF4 Design

Representation

Figure 34 shows a high level view of the execution of the IDEF4 tool.

After loading the IDEF4 tool, the user has the option of either typing

a command at the command line or selecting a command from the

command menu. The column of processes on the right of the

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

48

diagram represent the different modes of operation that the IDEF4

tool can operate under. Also notice that the command execution

phase of the process is an iterative process.

Decomposition 1 .v.1 .v.4.v
i

--7 It-
/ 1 I •

Execute
'Inheritance'
Command

Execute 'Class
Invariant'
Command

Figure 35.

___ Choose Class to /

Show Detail

"_ I /

Choose Class to /

Hide Detail

9 I /
Decomposition of Process Class Diagram

Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

49

Figure 35 defines the various commands that are available for
execution within the Class Browser Mode of the tool. Figures 36

through 43 define these commands in greater detail. It should be

noted that some of this functionality will overlap with other modes

of operations. Also, certain constraints exist that must be satisfied

for the operations to be performed correctly.

Constraints ".

• When adding features to a class, features that have already been

"used" by other classes will not be available. The only way a

class can use a feature that is used by another class is through

an inhertance link.

• When a class is deleted, classes that inherit from the deleted

class should have the inherited features removed from them.

• When an inheritance link is delete, any features that were

inherited as a result of that link should be removed from the

subclass and any subsequent subclasses.

• When specifying inheritance links, the tool should ensure that no
circular links are defined. Otherwise, a class could be a parent

class of itself.

• If the definition of an inheritance will result in a conflict of two

features, the tool should automatically redefine the feature.

Decomposition 1.v.l.v.4.v.1 .v

[IDEF4 Sere¢_ #9

Figure 36. Decomposition of Execute Create Class
Command

Decomposition 1.v. 1.v.4.v.2.v

Figure 37. Decomposition of Execute Delete Class
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

5O

Decomposition 1.v. 1.v.4.v.3.v

Input Class Name

1 .v. 1 _v.4.v. 1.v.2
Update Model _!_

Database

1 I

Figure 38. Decomposition of Execute Rename Class

Command

Decomposition 1 .v.l.v.4.v.4.v

Choose Class Create Class Input Class Name [[Cop), Info from

old Class to New

I I class
1.v.l.v.4v.2v.I l'v-l-v4-v-l'Vl| I I 1.v.l v.av_l.v.2 I I __ I

I Update Model /

Database

'2 I 1

Figure 39. Decomposition of Execute Copy Class
Command

Decomposition 1.v. 1.v.4.v.5.v

Choose Class

lvlvAv2vl

Add Superclasses

1.v.l.v.4.v. 1.v.3

__Add Subclasses

_ 1.v.l.v.4.v. 1.v.4

_1 Remove

Subclasses

Figure 40. Decomposition of Execute Inheritance

Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, lnc.

51

DCCOlZtposll_o'n 1.v.l.v.4.v.6.v

Invm_l_a _ toClass b.-4_ Invana_Dga _ SheetmadCl_ssinl--,._

I Is_t J I I JS_, • I_tm'_ I I

s_t from _ .hvan_ Dam _ Sheetandcl,+smI. i

Oloo_Oass i S I I I I lv]vav_v4 I [--L_J --

ChooseClassto I I Cma_aass AmmhI_taStxmt

to I LSheet

I I I t .v.t+,,,+,+.+,,,+_v._

l

IDEF4Scte__ I

, ! !

S_et aadQmssial---

Iv l+v4 v+6.', l.v.l.v.l_'v+f.v.41

Figure 41. Decomposition of Execute Class Invariance

Command

Decomposition 1.v. 1 .v.4.v.6.v.3

___ Put Class Data _

Sheet in Edit
Window

1 I
Accept User

Changes to Data
Sheet

2 I

I
IDEF4 Screen #1 11

I
Figure 42. Decomposition of Edit Class Invariance Data

Sheet

Farme

' "+' "- _ -- _ -- _ ,+a,umbFam== T AuarJa Fame To

i v4v.,vt I-imJre

i-'+i ;--,, I

Figure 43. Decomposition of Execute Feature Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

52

Decomposition 1.v.l.v.5.v

I

Display/Update
Method Set
Browser

I

Choose Method

Set to Show
Detail

Choose Method 1

Set to Hide Detail _-.
1

7 I !

Figure 44. Decomposition of Execute Method Browser
Command

Figure 44 outlines the commands that can be executed from the

Method Set Browser. Figures 45 through 50 describe these

operations in greater detail.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

53

Constraints:

• A Method Set can have only one contract data sheet, though

many contacts may be specified. The Create Contract Data Sheet
Command must ensure that the Method Set does not have an

existing data sheet.

• When a Method Set is deleted, any class/feature pairs that

specify a contract for the deleted method set should be

automatically updated.

Decomposition 1.v.1.v.5.v. 1.v

_ Input Method Set

Name

2 I

_d :u =L-

Figure 45. Decomposition of Execute Create Method Set
Command

Dccoml_sition 1.v.l.v.5.v.l.v.3.v

L 1

of Class

I I

Figure 46. Decomposition of Add Class/Routine Pairs to
Method Set

i [mY.]mVmSmV._V

Input Method Set

Ne=ae

Sabm_t Method

Set to Edat Pmrs to Method Set To DaJatbsz
Set

Figure 47. Decomposition of Execute Edit Method Set
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems. Inc.

54

Decomposition 1.v.l.v.5.v.3.v

Set to Copy _._

l I

, I I I
I-

IDEF4 Screen #7 [
1

I

Ceate Method Set

l_,lv_vlv|

H I_o,M_.,o_S_,I I _pyMo,_o_sotlI Su_t_,_ I__
Nagne _ Into to New _ Set To Database

II IIlvlt, qvl_,9 Ivlv_vlvd

Figure 48. Decomposition of Execute Copy Method Set
Command

De_omposkion 1.v.1 .v.5,v.4.v

__Choose Method [[Remove Method [

1 I I I 2 I /
I

IDEF4 Screen 07

Figure 49. Decomposition of Execute Delete Method Set
Command

I
SetToAdd I I CreateCon_act [[EditContr_. [I Submit CDS to L--

ConQ'actData _ Data Shc_ and _ DataShca _ _mdUpdltcMS 1_

s_to I I A_h_,Ms I I I I _Data_ /

1 I I 12 I I I _ I I 14 I /

Set Who_¢ CDS _ Data Sh¢_ _ Data Sheet in I

I I _' I I I I _'_'_"o I
, I 5 I I I;_._5._] 1"6 I I

--Ngt- r I I [_=_°.=_:,1 I_y_o.==I
---_'1 Set Whose CI_ _ Contract Data _l Data Sheet and _ from Old CDS [.---

Attach m MS ! _] to Copy [] She,_To

Set Who6e CDS _ From Database I

__'_._.. I I I

Figure 50. Decomposition of Process Contract Data Sheet
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

55

Decomposition 1.v.l.v.6.v

Execute 'Create _11

Feature'

Execute 'Delete
Feature'
Command

I

E . ,.-, / [[l)lsplay/Upaate /xecute t.opy • I _ [Feature Browser
Feature' _1 x_
Command i [_ I

I

Execute 'Edit F
Feature'
Command

Choose Feature to_

Show Detail

51

Choose Feature to_

Hide Detail

Figure 51. Decomposition of Execute Feature Browser

Command

Figure 51 defines the commands that would be available in the

Feature Pool Browser. Figures 52 through 56 describe these

operations in greater detail.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

56

Constraints:

• When a feature is deleted, all classes that use the feature should

have the feature removed.

• When a feature is deleted from a specific class, that class, and

any classes that inherit from that class should be updated to
reflect the removal of the feature.

• When a feature is modified, all classes that have the feature,

either by direct ownership or through inheritance, should be

updated to reflect the modification.

Decomposition 1 .v.1 .v.6.v. 1.v

Figure 52.

IDEF4 Screen #9

i
___Choose Class to /

Attach Feature to _-]
, I I I Specify New hi

1 I I Feature

|

Decomposition of Execute Create Feature
Command

_ Specify New

l_comp_iti_n 1,v.l.v.6.v,l.v.2.v Type L£'_

/ ,_, I I_tF,_t_m I FACX_ tU-r I I SubmitFeattt_wl

Figure 53. Decomposition of Specify New Feature

Decomposition 1.v. 1.v.6.v.2.v

Choose Feature to]] 'Remove Feature

Delete _ From Class
I I

i I I I 21
I

IDEF4 Screen #8

Remove Feature]] Remove Feature

From Subclasses _ From Database
I I

,_1 I 14 I

Figure 54. Decomposition of Execute Delete Feature
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

57

Decomposition 1.v.l.v.6.v.3

__ Choose Feanare to
Copy

1 I
I

IDEF4 Screen #8 [
I

I

Choose Class to
Attach Feature to

1.v.l.v.6.v.l.v.1 __v_l I _ I J I _ I l

Figure 55. Decomposition of Execute Copy Feature
Command

Decomposition 1 .v. 1.v.6.v.4

I
IDEF4 Screen #8 [

i

I

/ _,F_o_ I I

1 .v.l .v.8,v,4.v.2

__ Edit Type Link

Link From

1.v.1 .v,g_vA.v_l 0 I

Figure 56. Decomposition of Execute Edit Feature

Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

58

Decomposition 1.v. 1.v.7.v

Execute 'Create I._
Inheritance i
Diagram

Execute'Copy I._ I
Inheritance i I
Diagram

Execute 'Edit I--] I Display/Update

Inheritance • I _ _ I Inheritance
Diagram _1 "_" _ Diagram Mode
Command • I _ I

Execute 'Create FInheritance Link'
Command

Execute 'Delete
Inheritance Link'
Command

___ Remove

Inheritance
Diagram from
Database

6 I

Choose
Inheritance
Diagram'

IDEF4 Screen #9

Figure 57. Decomposition of Execute Class Inheritance

Diagram Command

Automated IDEF3 and 1DEF4 Tool Design Knowledge Based Systems, Inc.

59

Figure 57 defines the operations that are available within the Class

Inheritance Diagram Facility. This diagram facility can be used in

two ways. The first is to use the diagram as a viewing facility of

class relationships that are defined in the Class Browser. The second

way is to use the diagram facility as the means to create classes and

to define relationships between those classes. Over the course of a

system design it is likely that the designer will use both methods.

Figures 58 through 63 define the Inheritance diagram operations in

greater detail. The constraints associated with these operations are

identical to the constraints that were specified for the Class Browser

procedures. The reason for this is that there is a great deal of

functional duplication between the two modes of operation.

Decomposition 1.v.l.v.7.v.l.v

____ Create I r input Inheritance I I Add Classes to I'll [15_h_e_Lce l

Inheritance _ Diagram Name _ Inheritance _ Diagram to
Diagram I [[[Diagram • [Database [

I _ I I i_ I I I _[• 141 /

Figure 58. Decomposition of Execute Create Inheritance

Diagram Command

I)eco_n_o6ition 1.v.l.v.7.v.l.v,3.v

L.]

I l r_a_m I _ I

J ''I' _ ,_ i i L_

Figure 59. Decomposition of Add Classes to Inheritance

Diagram

Decomposition l.v.l.v.7.v.2.v

_ Create

Inheritance

1.v.l_v.7_v.1 v. 1

Figure 60.

Inheritance
Diagram Name _ _E_agram to New _ Diagram to

1.v.I v.7.vA .v_2 [l_vA.v.7.v.l.v.4

Decomposition of Execute Copy Inheritance

Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

6O

Decomposition 1.v.l.v.7.v.3.v

_ InputInheritance

Diagram New
Name

Add Classes to

Inheritance

Diagram

__ I I Remove tSlass I
ChooseCla_o I _ I _om I
Remove _ Inheritance __

[Dia r=m

I _ubrnR

Inheritance

_- Diagram to
Database

lvlvTvlv_l

Figure 61. Decomposition of Execute Edit Inheritance

Diagram Command

Decomposition 1.v. 1.v.7.v.4.v

r c oose I [Choose Subclass [[Add Inheritance I [Add Link to /

I---I_elationshipFrom _ Inheritance
--_ Superclass 1._ I pa_s_ I I _agram /

Figure 62. Decomposition of Execute Create Inheritance

Link Command

Decomposition 1.v.l.v.7.v.5.v

__ Choose
Inheritance Link
to Delete

' !I
,

IDF.F4 Screen #1 I

r
Figure 63.

Remove Link
from Inheritance

_emove Inheritance
_,elationship From
)atabase

Decomposition of Execute Delete Inheritance

Link Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

61

Decomposition 1.v.l.v.8.v

--_ EXeypceutI_i'C_eatameL

Execute 'EditType-Diagram'
Command

EXyl_CUtl_'Cr°PY, ___

Execute 'Delete __Type Diagram'
Command

___ Choose

Type-Diagram

IDEF4 Screen #9

Display/Update

Type-Diagram

7 I

Figure 64. Decomposition of Execute Type Diagram
Command

Figure 64 describes the operations available in the Type Diagram

Facility. As with the Inheritance diagrams, this diagram facility can

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

62

be used in two ways. The first is to use the diagram as a viewing

facility of feature type relationships that are defined in the Feature

Pool Browser. The second way is to use the diagram facility as the

means to create features, assign them to classes, and to define the

feature type relationships. Over the course of a system design it is

likely that the designer will use both methods.

Figures 65 through 71 describe the Type diagram operations in

greater detail.

Constraints:

• When a type link for a feature is deleted, all uses of that feature

should have their type links deleted, unless the feature has been

redefined in the subclass.

• When a type link for a feature is modified, all uses of that

feature should have their type links updated, unless the feature

has been redefined in the subclass.

• The deletion of a Type diagram should have no effect on the

type links of the class features appearing in that diagram. Only

the organizing structure of the diagram will be destroyed.

Decomposition 1.v.1 .v.8.v. 1.v

__ Create

Type-Diagram

1 I
__ put I IA c,a sosto/I Isu it

Type-Diagram to

/T)qa_eameDiagram [--'IIPI Type-Diagram • I Da"ba_e
I I I ?l i I 41

Figure 65. Decomposition of Execute Create Type

Diagram Command

l)¢¢,omp c_ition 1.v. 1 .v.8.v. 1.v.3,v

Figure 66. Decomposition of Add Classes to Type

Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

63

Decomposition 1.v. 1 .v.8.v.2.v

__ Input

Type-Diagram
New Name

1 I

I Add Classes to

_ Type-Diagram

lvlvRvlv_

__ Remove Classes

From

Type-Diagram

Figure 67. Decomposition of Execute Edit Type Diagram
Command

Decomposition 1.v. 1 .v.8.v.3.v

___ Create

Type-Diagram

l_v_l.v.g.v.l.v.l

c+y I I_.t I I
Type-Diagram _ Type-Diagram
contents I I Name

1 I I I 2 I

Submit
Type-Diagram to
Database

1 .v. 1.vRv+ 1.v_4

Figure 68. Decomposition of Execute Copy Type Diagram
Command

Figure 69. Decomposition of Execute Type Link

Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

64

Decomposition 1 .v. 1.v.8.v.4.v.2.v

Choose Class

That Attribute
Return Value is

Composed of

1 I
_ Create Type _ Edit Type Link _Link

1_v_1.v._.v Zl_v.6 l _v_1.v._v_4v.4

Figure 70. Decomposition of Specify New Type Link

Decomposition 1.v. 1.v.8.v.4.v.4.v

Put Type Link in

Edit Window

1 I
_ Accept User

Changes to
Type Link

2 I
Submit Type Link

to Database

1.v- 1.v.R.vA.v.8

Figure 71. Decomposition of Edit Type Link

Figure 72 defines the operations that would be available in the

Method Taxonomy Diagram facility. Figures 73 through 77 provide

the details for these operations.

Constraints:

• Deletion of a Method Taxonomy diagram results in all taxonomic

links between methods sets being deleted as well.

Automated IDEF3 and 1DEF4 Tool Design Knowledge Based Systems, Inc.

65

Decomposition 1.v. 1.v.9.v

---_ xecthu°_'Crean_omy _'a

'Copy
Taxonomy'

'Edit
Taxonomy'

I Execute Method /-_ Set Link
Command

Remove Method

Set Taxonomy from
Database

5 I

¥
Choose Method

Taxonomy

MST Diagram

6

IDEF4 Screen #9

Figure 72. Decomposition of Execute Method Taxonomy

Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

66

Decomposition l.v. 1.v.9.v. 1.v

Figure 73. Decomposition of Execute Create Method

Taxonomy Command

Decomposition l.v.l.v.9.v.l.v.3.v

Choose Method Add Method
Set to Add to Set to
Taxonomy Taxonomy

IDEF4 Screen #9

Figure 74. Decomposition of Add Method Sets to Method

Set Taxonomy

Decomposition 1.v. 1.v.9.v.2.v

Copy MST info] I Submit New MST1

to New MST _ to Database

1 I I I lv.l.vO_v_lv_4 /

Figure 75. Decomposition of Execute Copy Method

Taxonomy Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

67

Decomposition 1.v.l.v.9.v.3.v

Rename
Method

Taxonomy

Add Method Sets

to Taxonomy

1.y.1 vgv] v3

Remove Method
Sets from

Taxonomy

2 I

Figure 76. Decomposition

Taxonomy

of Execute

Command

Edit Method

Decomposl_onl.v.l.v.9.vA.v

IDEF4 Screen #3

Superclass
Method Set

I IDEF4 Screen #3

Add Method Set

Subclass Link to

Method Set Taxonomy
Submit MST to

Database

Method Remove Method

Set Link to De_e Set Link fr_a

Taxonomy

IDEF4 Screen #3 I

Figure 77. Decomposition of Execute

Command

Method Set Link

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

68

Decomposition 1.v. 1.v. 10.v

-SN-

Execute 'Create

Client Diagram ' _--.. 1

E I__ I I t)lsptay/upaate 1xecute 'Add • I _ I Client Diagram
Clients' i--I-----I_ I "_tr rCommand i I IlXXl [

_X_Cotrd_na_t_nm?Ve_-J

Remove Client /

Diagram from

Database [

I /

DiagramChooseClient

IDEF4 Screen #9

Figure 78. Decomposition of Execute Client Diagram
Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

69

Figure 78 describes the operations that would be available in the

Client Diagram facility. Figures 79 through 85 provide more detail on

the execution of these procedures.

Constraints."

• Deleteion of a Client Diagram would result in the deletion of all

client relationships defined in that diagram.

Decomposition 1 .v. 1.v. 10.v. 1.v

Diagram _ Class/Routine _ to Client _ Client Diagram _ Diagram to

[[Pair]] Diagram • [• [Database

IDEF4 Screen #9

Figure 79. Decomposition of Execute Create Client

Diagram Command

Decomposition 1.v.l.v.10.v. 1.v.3.v

k_. I

Figure 80. Decomposition of Add Suppliers to Client

Diagram

Decomposition 1.v.l,v.lO.v.l.vA.v

Figure 81. Decomposition of Add Clients to Client

Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

70

Decomposition 1.v. 1.v. 10.v.2.v

__ Create Client [Diagram

1.v.l.v.lO.v.l.v.] /

Choose _!_

Class/Routine
Pair

1.v. 1.v. 10_v, 1,v.2

Copy Client [[

D!agram to New

Submit Client

Diagram to
Database

] .v. 1.v. 10.v. 1.v.5

Figure 82. Decomposition of Execute Copy Client

Diagram Command

Decomposition 1.v. 1.v. 10.v.3.v

Add Suppliers to

Client Diagram
___ Submit Client

Diagram to
Database

] .v. 1 .v. 10.v. 1.v.5

Figure 83. Decomposition of Execute Add Suppliers

Command

Decomposition 1.v. 1.v. 10.v.4.v

Add Clients to

Client Diagram

l.v_l.v.10.v.l.vA
Submit Client

Diagram to
Database

1.v. 1.v. 10.v. 1.v.5

Figure 84. Decomposition of Execute Add Clients
Command

Decomposition l.v. 1.v. 10.v.5.v [Remove Supplier l

From Client

/ _oo_,,._toI I I_"_, I I

i t--J
IDEF4 Screen #4 _ l_3agram]

Submit Client
Diagram to
Database

1 v I i, lffl't, 1 v'_

Figure 85. Decomposition of Execute Remove

Subordinating Link Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

71

Decomposition 1.v. 1.v. 11 .v

l:xecute 'Create L..
Protocol II
Diagram' mr-]

Protocol
Diagram'
Command

IIIh,..

V

Ep_etute l:Copy hi I _ _ -_IY

Delete Protocol 1

From Database _-

4 I !

Choose Protocol
Diagram

Display/Update

Protocol Diagram

I

IDEF4 Screen #9

Figure 86. Decomposition of Execute Protocol Diagram

Command

Figure 86 describes the operations defined for the manipulation of

Protocol diagrams. Figures 87 through 89 provide additional details

on these operations.

Constraints:

• When a Protocol diagram is deleted, all arguments associated

with the feature's protocol are also deleted.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

72

Decomposition 1.v.l.v.11.v

Protocol
Diagram'
Command

Protocol
Diagram'
Command

__ Choose Protocol

Diagram

5 I
I

IDEF4 Screen #9

Display/Update

Protocol Diagram

I

Figure 87. Decomposition of Execute Create Protocol

Diagram Command

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

73

__lvvlv2vi ,s o1.10i-s l. 10°E s-n
I I I

CIIOO_ lype

Arl_rtx_ I--.,,,,,ll_ Nttm _ fo_ Arg_a_m _ Azgum_t _d

12 I I I _ I I 14 I /

t
I • I I I ,_,,_,,_

I
l.v.l.v l.v._v.3 I I I v 1 v l.v.2.vA

--_ A_m . I'_ Typ_of01d I'_J I _ I

W Move _ l_si_m for _ ArguznenLs I
Azsm_em

I-_--I. I,o ! I1,,! I
....[c_oo_A,g_J

w De_e I

_ II I

I_ SubmJZ Prolocol

l_.btse

Figure 88. Decomposition of Execute Edit Protocol

Diagram Command

Decomposidon 1.v.1 .v.11.v.3.v

Choose
Class/Feature Pair

to Copy to

1 ii
IDEF4 Screen #9

Create

Appropriate
Protocol Diagram

1"_,1 v 11 v 1 v9

CopyAppropriatei I
Info to New

Protocol Diagram I l
7 I I I

Submit Protocol

to Database

1 V] v 11 vl t,'l

Figure 89. Decomposition of Execute Copy Protocol
Command

Figures 90 through 100 display potential screens that will exist

within the IDEF4 system and are the screens that are referenced

within the process descriptions. These screens are meant only to

give a rough idea of how the tool screens will appear. Figure 90

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

74

displays the Class Inheritance Diagram screen. Figure 91 displays

the Type Diagram screen. Figure 92 displays the Method Taxonomy

Diagram screen. Figure 93 displays the Client Diagram screen. Figure

94 displays the Protocol Diagram screen. Figure 95 displays the Class

Browser screen. Figure 96 displays the Method Set Browser screen.

Figure 97 displays the Feature Browser screen. Figure 98 displays

the Pick From List Pop-up window. Figure 99 displays the

Input/Edit Pop-up Window. Finally, Figure 100 displays the Generic
Text Edit Window.

Class Inheritance Diaaram

Copy

Edit
Delete

? Feature ? Feature Uses ? Root Class

? Type ! ? Class Invariance ? Uses
@ Role ? Superclasses ?Default Type
@ Type Display Mode ? Subclasses _ Default Role
? Class i
? Method Set Class

Feature Use in Class

Corn rn an d:

Figure 90. IDEF4 Screen 1 - Class Inheritance Diagram

Automated IDEF3 and 1DEF4 Tool Design Knowledge Based Systems, Inc.

75

Commands

Create

Copy

Edit

Delete

Command:

Tv_eDiaaram

.! ? In Link .---.....1 p-%
I ?O_Lmk -..--I_._

? UOBs _ - _1 _.
? Links _ - _._ _'_

J..ctio., +--- _ -__
• References _ -.._

?Objects: OObjec, kN --I

Process_Description _%_

Scenario

@ Node # : Integer
IDEFO Ref. : Symbol

._Elaboration -iNk

? Decompositions-._
? References : _ Referent

LOB

@ Type : Keyword
? Objects : OObject
? Front : t
? Back : t

@ Timing : Keyword

_6on _i

Figure 91. IDEF4 Screen 2 Type Diagram

Method Taxnomv Diaoram

Create

Copy
Edit

Delete

Any-method

[Lock:sieze]

/ ",,,
Seize

[Simple-lock:seize] Check-lcok-priority
: [Ordered-lock-mixin :seize]

!
i

I Seize-if-priority-OK
{Ordered-lock:seize]

Command:

Figure 92. IDEF4 Screen 3 Method Taxonomy Diagram
Screen

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

76

Create

Copy

Edit

Delete

Command:

YJtcaLl_ae.u_

Process: GeneralLzed
_u,nple-lock." process-wait .variable:
:heck.for-mylock serf-if

Figure 93. IDEF4 Screen 4 - Client Diagram

Protocol Diaoram

Create

Copy

Edit

Delete

Command:

PrOCeSSSimple-lock

/
bly-own : possible-ownel

3

Figure 94. IDEF4 Screen 5 - Protocol Diagram

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

77

Class Browser

Commands

Create

Copy

Edit

De�ere

Command:

IDEF4 Element

IDMixin

@Name

@Label

GlossaryMixin

@Description

Feature Use in Class

(Glossary Mixin,IDEF4 Element)

?Feature

?Type

@Role

@Type Display Mode

?Class

?Method Set

Figure 95. IDEF4 Screen 6 Class Browser

Method Set Browser

Create

Copy

Edit

Delete

MethodSetl

Class-Feature Pair A

Class-Feature Pair B

MethodSet2

MethoctSet3

Command:

Figure 96. IDEF4 Screen 7 Method Set Browser

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

78

Feature Browser

Create

Copy
Edit
Delete

?Fe_ure
Peature Use Class

?Type

Feature Use Class

@Description

Glossary MixJn

Class

Feature

Feature Use Ciass

Command:

Figure 97. IDEF4 Screen 8 - Feature Browser

Generic Pick From List POD-UD

Item One
Item Two
Item Three
Item Four
Item Five
Item Six

Figure 98. IDEF4 Screen 9 Pick From List Pop-up
Window

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

79

GeneriC Edit POD-UD Window

Name:

Selection: type 1 type 2 type 3

Value I I

[] Do it [] Cancel

Figure 99. IDEF4 Screen 10

Window
Input/Edit Pop-up

Generic Text Edit Window

XXXXXXXXXXXXXXXXXXX

xxx

xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

Figure 100. IDEF4 Screen 11 - Generic Text Edit Window

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

8O

5.0 Conclusion

This document has presented the current designs for the automated

IDEF3 and IDEF4 tools. It describes the philosophy behind the tool

designs as well as the conceptual view of the interacting components

of the two tools. Finally, it presents a detailed description of the

existing designs for the tools using IDEF3 process descriptions and

IDEF4 diagrams.

In the preparation of these designs, the IDEF3 and IDEF4

methodologies have been very effective in defining the structure and

operation of the tools. The experience in designing systems in this

fashion has been very valuable and will result in future systems

being designed in this fashion. However, the number of IDEF3 and

IDEF4 diagrams that were produced using a Macintosh for this

document attest to the need for an automated tool to simplify this

design process. An idea developed from the production of this

document is to possibly tie the IDEF3 and IDEF4 tools to life cycle

documentation generation systems. The result would be the

production of documents similar to this one without the tedious work

required to produce the diagrams.

Finally, as with any design, the designs of the IDEF3 and IDEF4 tools

presented here are subject to modification during the

implementation of the tool prototypes. However, it is hoped that the

use of IDEF3 and IDEF4 in the design process has resulted in the

development of stable designs that will require a minimal amount of

revision during implementation.

Automated IDEF3 and IDEF4 Tool Design Knowledge Based Systems, Inc.

